K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(\left(\dfrac{a^2+b^2}{a+b}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{b^2+c^2}{b+c}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{c^2+a^2}{c+a}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)\le0\)

\(\Leftrightarrow\dfrac{a^2c+b^2c-c^2a-bc^2}{\left(a+b\right)\left(a+b+c\right)}+\dfrac{b^2a+c^2a-a^2b-ca^2}{\left(b+c\right)\left(a+b+c\right)}+\dfrac{c^2b+a^2b-b^2c-ab^2}{\left(c+a\right)\left(a+b+c\right)}\le0\)

\(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le0\) (1).

Không mất tính tổng quát giả sử \(a\geq b\geq c\).

Ta có \(\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{c+a}\\ac\left(a-c\right)+bc\left(b-c\right)\ge0\end{matrix}\right.\Rightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{c+a}\);

\(\left\{{}\begin{matrix}\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\\ba\left(b-a\right)+ca\left(c-a\right)\le0\end{matrix}\right.\Rightarrow\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}\le\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{c+a}\).

Từ đó: \(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)+ba\left(b-a\right)+ca\left(c-a\right)+cb\left(c-b\right)+ab\left(a-b\right)}{c+a}=0\).

Do đó (1) đúng hay bđt ban đầu cũng đúng. Đẳng thức xảy ra khi a = b = c.

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Lời giải:

Đặt đa thức đã cho là $P(a,b,c)$

Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$

$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$

$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$

$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$

Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$

Do đó: 
$P(a,b,c)=Aabc$

Thay $a=b=1, c=2$ ta có:

$8=2A\Rightarrow A=4$

Vậy $P=4abc$

 

31 tháng 3 2019

Cách này khá phức tạp dùng để tìm BĐT phụ

Để giải dễ hơn và không mất tính tổng quát thì giả sử a+b+c=3. Điểm rơi: a=b=c=1 và Min=3/4

Bất đẳng thức quy về dạng

\(\frac{a}{\left(a-3\right)^2}+\frac{b}{\left(b-3\right)^2}+\frac{c}{\left(c-3\right)^2}\ge\frac{3}{4}\)

Tìm m,n sao cho: \(\frac{a}{\left(a-3\right)^2}\ge am+n\)

Tương tự với \(\frac{b}{\left(b-3\right)^2}\)và \(\frac{c}{\left(c-3\right)^2}\)

Ta có: \(VT\ge\left(a+b+c\right)m+3n=3\left(m+n\right)\)

\(\Rightarrow3\left(m+n\right)=\frac{3}{4}\Rightarrow m+n=\frac{1}{4}\Rightarrow m=\frac{1}{4}-n\)

Thế ngược lên trên: 

\(\frac{a}{\left(a-3\right)^2}\ge\frac{1}{4}a-an+n\)

\(\Leftrightarrow\frac{a}{\left(a-3\right)^2}-\frac{1}{4}a\ge n\left(1-a\right)\)

\(\Leftrightarrow a\left(\frac{1}{\left(a-3\right)^2}-\frac{1}{4}\right)\ge n\left(1-a\right)\)

\(\Leftrightarrow a\left(\frac{-\left(a^2-6a+5\right)}{4\left(a-3\right)^2}\right)\ge n\left(1-a\right)\)

\(\Leftrightarrow\frac{a\left(1-a\right)\left(a-5\right)}{4\left(a-3\right)^2}\ge n\left(1-a\right)\)

\(\Rightarrow n=\frac{a\left(a-5\right)}{4\left(a-3\right)^2}=\frac{1}{4}\)khi a=1 (điểm rơi lấy xuống)

\(\Rightarrow m=\frac{1}{2}\)

BĐT phụ cần CM: \(\frac{a}{\left(a-3\right)^2}\ge\frac{2a-1}{4}\)

31 tháng 3 2019

Cho a,b,c>0. Cmr: a/(b+c)^2+b/(c+a)^2+c/(a+b)^2>=9/[4(a+b+c)]. Giup minh vs...!? | Yahoo Hỏi & Đáp

17 tháng 1 2021

Sigma CTV         , Tan Thuy Hoang CTV, Nguyễn Việt Lâm Giáo viên, Hồng Phúc CTV

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

26 tháng 1 2022

1. \(a=\dfrac{1}{3};b=1\)

2. \(a=\dfrac{1}{4};b=1;c=-1\)

3. \(b=1;c=\dfrac{1}{4};d=1\)

4. \(a=1;b=1;c=1;d=1\)

30 tháng 8 2016

b a c A B C H

Xét hình sau.

\(\hept{\begin{cases}\sqrt{a^2+b^2}=AB\\\sqrt{b^2+c^2}=BC\end{cases}}\)

Cần chứng minh \(AB.BC\ge BH.AC\)

Ta có: \(BH.AC=2S_{\Delta ABC}=AB.BC.\sin ABC\)

Vậy cần chứng minh \(AB.BC\ge AB.BC.\sin ABC\Leftrightarrow\sin ABC\le1\)

Bất bẳng thức cuối hiển nhiên đúng, nên ta có đpcm.

5 tháng 6 2023

đkxđ: \(abc\ne0\)

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow\left(a+b+c\right)^2=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 Kết hợp với \(a^2+b^2+c^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) và đẳng thức \(\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\), dễ dàng suy ra \(ab+bc+ca=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) \(\Leftrightarrow ab+bc+ca=\dfrac{a+b+c}{abc}\) \(\Leftrightarrow a+b+c=abc\left(ab+bc+ca\right)\) (1)

 Mặt khác, \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}\) \(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\) (2)

Từ (1) và (2), suy ra \(a+b+c=\left(abc\right)^2\left(a+b+c\right)\) \(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\abc=\pm1\end{matrix}\right.\)

TH1: \(a+b+c=0\), suy ra \(\dfrac{ab+bc+ca}{abc}=0\) hay \(ab+bc+ca=0\), từ đó suy ra \(a^2+b^2+c^2=0\) \(\Leftrightarrow a=b=c=0\), loại

TH2: \(abc=1\). Ta dễ dàng suy ra được \(a+b+c=ab+bc+ca\). Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\) \(=abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\) \(=0\) nên suy ra \(\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\). Giả sử \(a=1\). Khi đó ta có \(bc=1\)

 Thay lại vào 2 pt đã cho, ta đều thấy thỏa mãn. Vậy ta tìm được 1 tập nghiệm của hệ là \(S_1=\left\{\left(a;b;c\right)|a=1;bc=1\right\}\) và các hoán vị của mỗi nghiệm thuộc tập S1.

 TH3: \(abc=-1\). Ta kiểm chứng được \(a+b+c+ab+bc+ca=0\). Ta có \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ab+bc+ca+a+b+c+1=0\) nên \(\left[{}\begin{matrix}a=-1\\b=-1\\c=-1\end{matrix}\right.\). Nếu \(a=-1\) thì suy ra \(bc=1\). Thử lại vào cả 2 pt ta đều thấy thỏa mãn. Như vậy ta tìm được tập nghiệm nữa của hpt đã cho là \(S_2=\left\{\left(a;b;c\right)|a=-1;bc=1\right\}\) và các hoán vị của mỗi bộ nghiệm trong các nghiệm thuộc \(S_2\).

 Vậy tập nghiệm của hpt đã cho là \(S=S_1\cup S_2=\left\{\left(a;b;c\right)|a=\pm1;bc=1\right\}\) và các hoán vị của mỗi phần tử thuộc S.